Analisis Tekno-Ekonomi pada Produksi Nanopartikel Emas (AuNP) dengan Metode Biosintesis menggunakan Sargassum horneri pada Skala Industri

Thyta Medina Salsabila Erlangga, Asep Bayu Dani Nandiyanto, Meli Fiandini

Abstract


Biosintesis nanopartikel emas (AuNP) menggunakan ekstrak Sargassum horneri (SH) dinilai lebih ekonomis dan terbukti menghasilkan nanopartikel emas yang berperan sebagai katalis dalam degradasi zat warna. Oleh karena itu, produksi nanopartikel emas perlu dikembangkan dalam skala industri. Penelitian ini bertujuan untuk mengetahui kelayakan proyek biosintesis nanopartikel emas menggunakan ekstrak Sargassum horneri dalam skala industri. Metode evaluasi ekonomi menggunakan analisis terhadap beberapa parameter evaluasi ekonomi seperti Gross Profit Margin (GPM), Break Even Point (BEP), Cumulative Net Present Value (CNPV), Payback Period (PBP), dan Profitability Index (PI). Hasil penelitian menunjukkan bahwa pada skala industri, jumlah produksi Nanopartikel Emas dalam setahun adalah 132 L. Total harga yang dibutuhkan untuk produksi nanopartikel emas dalam setahun adalah USD 8.573.006,05, dengan penjualan tahunan USD 13.200.000, sehingga total biaya adalah USD 4.626.993,95 USD per tahun. Dalam kondisi ideal, analisis PBP menunjukkan bahwa proyek akan menguntungkan pada tahun ke-3, dan analisis PI menunjukkan bahwa biaya modal awal dapat diperoleh kembali dari tahun ke-3. Analisis terhadap beberapa kondisi tidak ideal menunjukkan bahwa kerugian proyek dapat terjadi. Berdasarkan evaluasi ekonomi, proyek ini dapat dilakukan dengan mengantisipasi kerugian yang akan terjadi akibat perubahan beberapa kondisi ideal.


Full Text:

PDF

References


M. Yari and N. Javanmardi, “Multifunctional Gold nanoparticle : as novel agents for cancer treatment,†J. Adv. Appl. NanoBio-Technologies, vol. 3, no. 2, pp. 43–48, 2022.

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: Gold nanoparticles for biomedicine,†Chem. Soc. Rev., vol. 41, no. 7, pp. 2740–2779, 2012, doi: 10.1039/c1cs15237h.

L. A. Dykman and N. G. Khlebtsov, “Gold Nanoparticles in Biology and Medicine: Recent Advances and Prospects,†Acta Naturae, vol. 3, no. 2, pp. 34–55, 2011, doi: 10.32607/20758251-2011-3-2-34-56.

A. Sumaira et al., “Gold-Based Nanomaterials for Applications in Nanomedicine,†Top Curr Chem, vol. 370, pp. 169–202, 2016, doi: 10.1007/978-3-319-22942-3.

M. Abbas, H. H. Susapto, and C. A. E. Hauser, “Synthesis and Organization of Gold-Peptide Nanoparticles for Catalytic Activities,†ACS Omega, vol. 7, no. 2, pp. 2082–2090, 2022, doi: 10.1021/acsomega.1c05546.

W. C. Song, B. Kim, S. Y. Park, G. Park, and J. W. Oh, “Biosynthesis of silver and gold nanoparticles using Sargassum horneri extract as catalyst for industrial dye degradation,†Arab. J. Chem., vol. 15, no. 9, p. 104056, 2022, doi: 10.1016/j.arabjc.2022.104056.

X. Lu, X. Dong, K. Zhang, X. Han, X. Fang, and Y. Zhang, “A gold nanorods-based fluorescent biosensor for the detection of hepatitis B virus DNA based on fluorescence resonance energy transfer,†Analyst, vol. 138, no. 2, pp. 642–650, 2013, doi: 10.1039/c2an36099c.

D. Lin, R. G. Pillai, W. E. Lee, and A. B. Jemere, “An impedimetric biosensor for E. coli O157:H7 based on the use of self-assembled gold nanoparticles and protein G,†Microchim. Acta, vol. 186, no. 3, pp. 1–9, 2019, doi: 10.1007/s00604-019-3282-3.

J. Cheng, Y. J. Gu, S. H. Cheng, and W. T. Wong, “Surface functionalized gold nanoparticles for drug delivery,†J. Biomed. Nanotechnol., vol. 9, no. 8, pp. 1362–1369, 2013, doi: 10.1166/jbn.2013.1536.

M. A. MacKey, M. R. K. Ali, L. A. Austin, R. D. Near, and M. A. El-Sayed, “The most effective gold nanorod size for plasmonic photothermal therapy: Theory and in vitro experiments,†J. Phys. Chem. B, vol. 118, no. 5, pp. 1319–1326, 2014, doi: 10.1021/jp409298f.

C. O. Silva et al., “Bioproduction of gold nanoparticles for photothermal therapy,†Ther. Deliv., vol. 7, no. 5, pp. 287–304, 2016, doi: 10.4155/tde-2015-0011.

J. Im et al., “Functionalized Gold Nanoparticles with a Cohesion Enhancer for Robust Flexible Electrodes,†ACS Appl. Nano Mater., vol. 5, no. 5, pp. 6708–6716, 2022, doi: 10.1021/acsanm.2c00742.

M. Ramakrishna, D. Rajesh Babu, R. M. Gengan, S. Chandra, and G. Nageswara Rao, “Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity,†J. Nanostructure Chem., vol. 6, no. 1, pp. 1–13, 2016, doi: 10.1007/s40097-015-0173-y.

H. S. Kim et al., “A comparative study of Sargassum horneri Korea and China strains collected along the coast of Jeju island South Korea: Its components and bioactive properties,†Algae, vol. 33, no. 4, pp. 341–349, 2018, doi: 10.4490/algae.2018.33.11.15.

P. Maratussolihah, S. Rahmadianti, K. P. Tyas, G. Chelvina, and S. Girsang, “ASEAN Journal for Science and Engineering in Materials Techno-Economic Evaluation of Gold Nanoparticles Using Banana Peel ( Musa Paradisiaca ),†vol. 1, no. 1, pp. 1–12, 2022.

A. B. D. Nandiyanto, R. Ragadhita, and I. Istadi, “Moroccan Journal of Chemistry Techno-economic Analysis for the Production of Silica Particles from Agricultural Wastes,†J. Chem, vol. 8, pp. 801–818, 2020, [Online]. Available: http://revues.imist.ma/?journal=morjchem&page=login

H. R. El-Seedi et al., “Metal nanoparticles fabricated by green chemistry using natural extracts: Biosynthesis, mechanisms, and applications,†RSC Adv., vol. 9, no. 42, pp. 24539–24559, 2019, doi: 10.1039/c9ra02225b.

S. Dharman, R. Kumar, and K. Shanmugasundaram, “Synthesis and characterisation of novel turmeric gold nanoparticles and evaluation of its antioxidant, anti-inflammatory, antibacterial activity for application in oral mucositis-an invitro study,†Int. J. Dent. Oral Sci., vol. 8, no. 5, pp. 2525–2532, 2021, doi: 10.19070/2377-8075-21000495.

H. S. Kim et al., “Anti-allergy effect of mojabanchromanol isolated from Sargassum horneri in bone marrow-derived cultured mast cells,†Algal Res., vol. 48, no. May, p. 101898, 2020, doi: 10.1016/j.algal.2020.101898.

M. Mahdavi, F. Namvar, M. Bin Ahmad, and R. Mohamad, “Green biosynthesis and characterization of magnetic iron oxide (Fe 3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract,†Molecules, vol. 18, no. 5, pp. 5954–5964, 2013, doi: 10.3390/molecules18055954.

A. B. D. Nandiyanto, “Cost analysis and economic evaluation for the fabrication of activated carbon and silica particles from rice straw waste,†J. Eng. Sci. Technol., vol. 13, no. 6, pp. 1523–1539, 2018.




DOI: http://dx.doi.org/10.30659/jurti.1.2.103-110

Refbacks

  • There are currently no refbacks.


Jurnal Teknik Industri diterbitkan oleh Fakultas Teknologi Industri, Universitas Islam Sultan Agung, Semarang, Indonesia