THE CHARACTERISTICS OF SCAFFOLD DESIGN FOR BONE REGENERATION : A LITERATURE REVIEW

Erlina Sih Mahanani*    -  Universitas Muhammadiyah Yogyakarta, Indonesia

(*) Corresponding Author

Background: Scaffold for bone regeneration is called bone graft as well, requires the proper design in order to produce new bone formation. Characteristic requirements are needed.
Method: The aimed of this review to discuse the characteristics of scaffold that be needed for bone regeneration.
Result: The strength of the scaffold's mechanical structure and degradation profile are adjusted to the time that take for cells to differentiate into bone cells. The swelling ability, porosity size, and interconnected porosity determine the success of incorporation of signal molecules which loaded into the scaffold. The proper selection of molecule signal is needed for stimulating cells to differentiate to be bone cells. The porosity size is adjusted to cell size, because scaffold as a micro enviroment for cells to live, grow and form a new bone. The basic ingredients of scaffold should qualify the biocompatibility standards to be accepted by the body. Scaffold is a micro enviroment for cells to produce bone matrix, and should be degraded properly after the new bone formation is formed.
Conclusion: Therefore the right characteristics should be fulfilled in the design of scaffold for bone regeneration.

Keywords: Characteristic; Scaffold design; Bone regeneration; New bone formation; Micro enviroment

  1. Hansson S, & Halldin A. Alveolar ridge resorption after tooth extraction: A consequence of a fundamental principle of bone physiology. Journal of dental biomechanics. 2012;3:1-8.
  2. Pagni G, Pellegrini G, Giannobile WV, Rasperini G, "Postextraction Alveolar Ridge Preservation: Biological Basis and Treatments", International Journal of Dentistry, 2012; vol. 2012:1-13.
  3. Roddy E, DeBaun MR, Daoud-Gray A, Yang YP, Gardner MJ. Treatment of critical-sized bone defects: clinical and tissue engineering perspectives. Eur J Orthop Surg Traumatol. 2018 Apr;28(3):351-362.
  4. Mahanani ES, Bachtiar I, & Ana ID. Human mesenchymal stem cells behavior on synthetic coral scaffold. Key Engineering Materials, 2016;696:205–211.
  5. Verma P, Verma V, Animal Biotechnology Models in Discovery and Translation, Chapter 13 Concepts of Tissue Engineering, 2014; Science Direct (Imprint Academic Press):233-245
  6. Kamath MS, Ahmed SS, Dhanasekaran M, Santosh SW. Polycaprolactone scaffold engineered for sustained release of resveratrol: therapeutic enhancement in bone tissue engineering. Int J Nanomedicine. 2014;9:183-95.
  7. Ghosh B, Pal I,Basic Ideas and Concepts about Tissue Engineering: A Review, International Journal of Scientific & Engineering Research, 2016; Vol 7:12:1-4
  8. Sándor GK,Tissue engineering of bone: Clinical observations with adipose-derived stem cells, resorbable scaffolds, and growth factors. Ann Maxillofac Surg. 2012;2(1):8-11.
  9. Wei, S., Ma, JX., Xu, L. et al. Biodegradable materials for bone defect repair. Military Med Res 2020: 7 (54):1-25.
  10. Zhang H, Zhou L, Zhang W. Control of Scaffold Degradation in Tissue Engineering: A Review. Tissue Engineering Part B Rev. 2014; 20(5): 492-502.
  11. Velasco MA, Narváez-Tovar CA, Garzón-Alvarado DA, "Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering", BioMed Research Internasional. 2015; vol. 2015:1-21.
  12. Anwar SA, & Solechan. Analisa Karakteristik dan Sifat Mekanik Scaffold Rekonstruksi Mandibula dari Material Bhipasis Calsium Phospate dengan Penguat Cangkang Kerang Srimping dan Gelatin Menggunakan Metode Functionally Graded Material. Prosiding SNATIF. 2014;1:137-144
  13. Tominac Trcin M, Dekaris I, Mijović B, Bujić, M., Zdraveva, E., Dolenec, T., Pauk-Gulić, M., Primorac, D., Crnjac, J., Špoljarić, B., Mršić, G., Kuna, K., Špoljarić, D., & Popović, M. Synthetic vs natural scaffolds for human limbal stem cells. Croat Med J. 2015;56(3):246-256.
  14. Corrales LP, Esteves M L, Ramirez-Vick J E. Scaffold Design for Bone Regeneration, 2014;14:15-56.
  15. Fitriani L, & Suciati T. Formulasi Mikropartikel Berpori dalam Poli (D,L-Laktida) sebagai Scaffold dengan Teknik Emulsifikasi Penguapan Pelarut. J Ris Kim, 2011;4:7-14.
  16. Mahanani ES, Istiyani ANN, Arum RS. Epithelium Thickness, Platelet Rich Plasma, Synthetic Coral Scaffold, Wound Healing, Key Engineering Material. 2020;884:267-273
  17. Wattanutchariya W, & Changkowchai W. Characterization of Porous Scaffold from Chitosan-Gelatin/Hydroxyapatite for Bone Grafting. Proceedings of IMECS, 2014; vol 2:1-5
  18. Li ZJ, Choi HI, Choi DK, Sohn KC, Im M, Seo YJ, Lee YH, Lee JH, Lee Y. Autologous platelet-rich plasma: a potential therapeutic tool for promoting hair growth. Dermatol Surg. 2012;38:1040-6.
  19. Liu J, Song W, Yuan T, Xu Z, Jia W, Zhang C. A Comparison between Platelet-Rich Plasma (PRP) and Hyaluronate Acid on the Healing of Cartilage Defects. PLoS ONE 2014;9(5):e97293:1-6.
  20. Lou T, Wang X, Song G, Gu Z, Yang Z, Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering. International Journal of Biological Macromolecules. 2014; vol 69:464-470.
  21. Kiradzhiyska DD, Mantcheva RD. Overview of Biocompatible Materials and Their Use in Medicine. Folia Med (Plovdiv). 2019;61(1):34–40
  22. Pavlovic V, Ciric M, Jovanovic V, Stojanovic P. Platelet Rich Plasma: a short overview of certain bioactive components. Open Med 2016;11(1):242-247
  23. lTavassoli-Hojjati S, Sattari M, Ghasemi T, Ahmadi R, Mashayekhi A. Effect of platelet-rich plasma concentrations on the proliferation of periodontal cells: An in vitro study. Eur J Dent. 2016;10(04):469–74.
  24. Oley MC, Islam AA, Hatta M, Hardjo M, Nirmalasari L, Rendy L, dkk. Effects of platelet-rich plasma and carbonated hydroxyapatite combination on cranial defect Bone Regeneration: An animal study. Wound Med. 2018;21:12–5.
  25. Alves R, Grimalt R. A Review of Platelet-Rich Plasma: History, Biology, Mechanism of Action, and Classification. Skin Appendage Disord. 2018;4(1):18–24.
  26. Khalili A, Ahmad M. A Review of Cell Adhesion Studies for Biomedical and Biological Applications. Int J Mol Sci. 2015;16(8):18149–84.
  27. Matsui M, Tabata Y. Enhanced angiogenesis by multiple release of platelet-rich plasma contents and basic fibroblast growth factor from gelatin hydrogels. Acta Biomater. 2012 May;8(5):1792-801

Lisensi Creative Commons
This work is licensed under a Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.
Contact us: Odonto Dental Journal: Jl. Raya Kaligawe Km.4, PO BOX 1054/SM Semarang, Central Java, Indonesia, 50112. Email: odontodentaljournal@unissula.ac.id
apps