Cytotoxicity and mechanical properties of biphasic calcium phosphate scaffold from Tegilarca granosa due to its composition

Widyasri Prananingrum*    -  Faculty of Dentistry Universitas Hang Tuah, Indonesia
Grace Caroline  -  Faculty of Dentistry Universitas Hang Tuah, Indonesia
Mohammad Basroni Rizal  -  Faculty of Dentistry Universitas Hang Tuah, Indonesia
Puguh Bayu Prabowo  -  Faculty of Dentistry Universitas Hang Tuah, Indonesia
Afif Fahwi Pratama  -  Faculty of Dentistry Universitas Hang Tuah, Indonesia
Muhammad Firdan Resaldi  -  Faculty of Dentistry Universitas Hang Tuah, Indonesia
Nindya Yuanita Annisa  -  Faculty of Dentistry Universitas Hang Tuah, Indonesia
Yusti Fadhilah  -  Faculty of Dentistry Universitas Hang Tuah
Rima Parwati Sari  -  Faculty of Dentistry Universitas Hang Tuah, Indonesia

(*) Corresponding Author
Background: Biphasic calcium phosphate (BCP) is graft material contained HA and TCP. Tegilarca granosa shell is a natural source that may converted into BCP. This study aims to determine the composition and cytotoxicity of BCP synthesized from Tegilarca granosa shell used various hydrothermal hours and to evaluate the mechanical properties of BCP scaffold. Methods: Tegilarca granosa shell was converted into BCP using hydrothermal method at 200˚C for 6h (Group 1); 9h (Group 2); and 12h (Group 3). The composition was determined by XRD and the cell viability were evaluated using MTT Assays. Each group was added with 20% gelatin ratio 50:50 (w/v) and freeze-dried to form scaffold. Scaffolds (Ø6mm x 4mm) were prepared for diametral tensile strength (DTS) test (n=6) and scaffolds (Ø7mm x 11mm) were used for compressive strength (CS) test (n=6). All data were analyzed using Kruskall-Wallis followed by Mann-Whitney test. Results: The composition of BCP (HA/ TCP) at Group 1, Group 2, and Group 3 were 81.80%/14,10%; 87%/6%; and 72%/21%. The cell viabilities were good for all groups. The DTS and CS test showed there was a significant difference between Group 1 and Group 3 scaffold, meanwhile there was no significant differences between Group 2 and Group 3 scaffold. Group 3 scaffold showed the highest DTS and CS, 6.921 MPa and 1,233 MPa. Conclusion: The BCP composition were depent on hydrothermal hours. Although all scaffold groups were non-toxic, but BCP scaffold synthesized from Tegilarca granosa shell using hydrothermal for 12 hours showed the highest mechanical properties.

Keywords: BCP composition; compressive strength; diametral tensile strength; hydrothermal time; Tegilarca granosa; viability cell

  1. Samarawickrama KG. A Review on bone grafting, bone substitutes and bone tissue engineering. In Proceedings of the 2nd International Conference on Medical and Health Informatics. 2018;244-251.
  2. Kim KH, Park JY, Park HS, Kim KS, Chin DK, Cho YE, Kuh SU. The influences of different ratios of biphasic calcium phosphate and collagen augmentation on posterior lumbar spinal fusion in rat model. Yonsei Med J. 2017;58(2):407-414.
  3. Kumar V, Abbas AK, Aster JC. Robbins Basic Pathology, 9th ed. Canada: Elsevier; 2013. p. 53-69.
  4. Bharatham H, Zakaria MZAB, Perimal EK, Yusof LM, Hamid M. Mineral and physiochemical evaluation of cockle shell (Anadara granosa) and other selected Molluscan shell as potential biomaterials. Sains Malaysiana. 2014;43(7):1023-1029.
  5. Shafiu Kamba A, Zakaria ZA. Osteoblasts growth behaviour on bio-based calcium carbonate aragonite nanocrystal. Biomed Res Int. 2014;2014:215097.
  6. Amin A, Ulfah M. Sintesis dan karakterisasi komposit hidroksiapatit dari tulang ikan Lamuru (Sardilnella Longiceps)-Kitosan sebagai bone filler. JF FIK UINAM. 2017;5(1):9-15.
  7. Istifarah. Sintesis dan Karakterisasi Komposit Hidroksiapatit Dari Tulang Sotong (Sepia sp.) – Kitosan Untuk Kandidat Aplikasi Bone Filler [thesis]. Surabaya: Program Studi S2 Biomedik Departemen Fisika, Fakultas dan Teknologi Universitas Airlangga; 2012.
  8. Hidayat NN. Sintesis dan Karakterisasi Sifat Makroskopik Nano-Komposit Hidroksiapatit/Kitosan (n-Hap/CS) untuk Aplikasi Implan Tulang [skripsi]. Surabaya: Universitas Airlangga; 2012.
  9. Carten CB, Norton MG. Ceramic Material. USA: Springer; 2013. p. 181.
  10. Anwar SA, Solechan, Raharjo S. Scaffold Rekonstruksi Mandibula dari Material Biphasic Calcium Phosphate dengan Penguat Cangkang Kerang Sriping dan Gelatin Menggunakan Metode Functionally Graded Material. Traksi. 2014;14(1):138-142.
  11. Philips R.W. Science of Dental Materials. 9th ed. Philadelphia: W.B.Saunders Company; 2000. p. 38-39.
  12. Kazemzadeh-Narbat M, Orang F, Hashjin MS, Goudarzi A. Fabrication of Porous Hydroxyapatite-Gelatin Composite Scaffolds for Bone Tissue Engineering. Iran Biomed J. 2006;10:218-219.
  13. Carmello JC, Fais LMGF, Ribeiro LNDM, Neto SC, Guaglianoni DG dan Pinelli LGAP. Diametral Tensile Strength and Film Thickness of an Experimental Dental Luting Agent Derived from Castor Oil. J Appl Oral Sci. 2012;20(1):16-20.
  14. Bresciani E, Barata T de JE, Fagundes TC, Adachi A, Terrin MM, Navarro MF de L. Compressive and diametral tensile strength of glass ionomer cements. J Appl Oral Sci. 2004;12(4):344-8.
  15. Tontowi AE, Herliansyah MK. Scaffold bHA/Gelatin dengan pelapis PVA untuk aplikasi implant. Jurnal Teknosains. 2013;3(1):1-7.
  16. Prijambodo S, Budhy T, Sari R. Bioviability of Beta-Tricalcium Phosphate Nanoencapsulation from Synthesis of Anadara granosa Shells on Fibroblast Cell Line BHK-21 Cell Culture. International Journal of Integrated Engineering. 2022;14(2):7-12.
  17. Cialdai F, Risaliti C, Monici M. Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Front. Bioeng. Biotechnol. 2022;10:958381.
  18. de Sousa Gomes P, Daugela P, Poskevicius L, Mariano L, Fernandes MH. Molecular and Cellular Aspects of Socket Healing in the Absence and Presence of Graft Materials and Autologous Platelet Concentrates: a Focused Review. J Oral Maxillofac Res. 2019;10(3):e2.
  19. Aufan MR, Daulay AH, Indriani D, Nuruddin A, Purwasasmita BS. Sintesis Scaffold Alginat-Kitosan-Karbonat Apatit Sebagai Bone Graft Menggunakan Metode Freeze Drying. Journal Biofisika. 2012;8(1):16-24.
  20. Aldy N, Andi S, Niti M. Pengaruh Aplikasi Nano Filled Coating Agent Terhadap Kuat Tarik Diametral Semen Ionomer Kaca [skripsi]. Jakarta: Universitas Indonesia; 2013.
  21. Harish BA, Hanumesh BM, Siddesh TM, Siddhalingesh BK. An experimental investigation on partial replacement of cement by glass powder on concrete. IRJET. 2016;3(10):1218-1224.
  22. Sunarso, Noor AFM, Kasim SR, Othman R, Ana ID, Ishikawa K. Synthesis of biphasic calcium phosphate by hydrothermal route and conversion to porous sintered scaffold. Journal of Biomaterials and Nanobiotechnology. 2013;4(3):273-278.
  23. Dahlan K, Dewi ST. Pengaruh Sintering dan Penambahan Senyawa Karbonat Pada Sintesis Senyawa Kalsium Fosfat. Prosiding Semirata FMIPA Universitas Lampung. 2013:153-158.
  24. Lugo VR, Salinas E, Vázquez RA, Alemán K, Rivera AL. Hydroxyapatite synthesis from a starfish and β-tricalcium phosphate using a hydrothermal method. RSC Adv. 2017;7(13):7631-7639.
  25. Hodsgon E, Levi PE. A textbook of modern toxicology 2rd ed. New York: McGraw-Hill Companies Inc.; 2000. p. 292.
  26. Rahman FA., Naday QA., Utami TW. The effect of soursop (Annona Muricata L.) essential oils on viability cells: an in-vitro study. Odonto Dental Journal. 2021;8(1):28-33.
  27. Ramay HR, Zhang M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering, Biomaterials. 2004;25(21):5171-5180.
  28. Moslim NA, Beh CY, Kasim SR, Ramakrishnan S. Effect of Composition and Temperature to the HA/ß-TCP Composite. IOP Conf. Series: Journal of Physics.: Conf. Ser. 2018;012023.
  29. Baradaran S, Hamdi M, Metselaar IH. Biphasic calcium phosphate (BCP) macroporous scaffold with different ratios of HA/β-TCP by combination of gel casting and polymer sponge methods. Advances in Applied Ceramics. 2012;111(7): 367-373.
  30. Ferdynanto RA, Dharmayanti PES, Dewi PTK, Prananingrum W. The effect of various concentrations of HA-TCP derived from cockle shell synthesis on scaffold porosity. Dental Journal. 2018;51(3):114-118.

Lisensi Creative Commons
This work is licensed under a Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.
Contact us: Odonto Dental Journal: Jl. Raya Kaligawe Km.4, PO BOX 1054/SM Semarang, Central Java, Indonesia, 50112. Email: odontodentaljournal@unissula.ac.id
apps