Utilization of Multitemporal Landsat Images for Analysis Urban Heat Island Based on Google Earth Engine in Cimahi City

Syahrial Fahmi*  -  Universitas Pendidikan Indonesia, Indonesia
Diki Wahyudi  -  Universitas Pendidikan Indonesia, Indonesia
Rayana Estu Putra  -  Universitas Pendidikan Indonesia, Indonesia

(*) Corresponding Author

Supp. File(s): common.other
Cimahi City is physically part of the Bandung-Cimahi core city conurbation of the system of cities in the Bandung City Basin Region so has high development activity. This condition causes an increase in the surface temperature of Cimahi City, especially in the downtown area and triggers the Urban heat island phenomenon. This research was conducted to map multi temporal spatial changes in the vegetation index (MSAVI) and land surface temperature (LST) in Cimahi City in 2015, 2019 and 2023 and to analyze their relationship to the phenomenon and the widespread distribution of urban heat island using Landsat 8 imagery by integrating cloud techniques. computing Google Earth Engine. The results of surface temperature (LST) were correlated with vegetation density (MSAVI) using a simple regression test to determine how much influence changes in vegetation density had on surface temperature (LST). The distribution of urban heat islands was obtained from the classification of LST processing with urban heat island threshold values. The results showed that there was an increase in the distribution area of the urban heat island phenomenon with a total area of urban heat island increasing by 1319.94 Ha in 2015, 3389.04 Ha in 2019, and 3634.04 Ha in 2023. The areas that are dominated by urban impacts The heat island occurred in South Cimahi District with an area affected of 1440.43 Ha.

Supplement Files

  1. Aslan, N., & Koc-San, D. (2016). Analysis of relationship between urban heat island effect and land use/cover type using Landsat 7 ETM+ and Landsat 8 OLI images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41, 821–828.
  2. Du, H., Ai, J., Cai, Y., Jiang, H., & Liu, P. (2019). Combined effects of the surface urban heat island with landscape composition and configuration based on remote sensing: A case study of Shanghai, China. Sustainability, 11(10), 2890.
  3. Fawzi, N. I. (2017). Mengukur urban heat island menggunakan penginderaan jauh, kasus di Kota Yogyakarta. Majalah Ilmiah Globe, 19(2), 195–206.
  4. Feizizadeh, B., & Blaschke, T. (2013). Examining urban heat island relations to land use and air pollution: Multiple endmember spectral mixture analysis for thermal remote sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(3), 1749–1756.
  5. Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27.
  6. Hu, Y., & Jia, G. (2010). Influence of land use change on urban heat island derived from multiâ€sensor data. International Journal of Climatology, 30(9), 1382–1395.
  7. Jin, M., Dickinson, R. E., & Zhang, D. A. (2005). The footprint of urban areas on global climate as characterized by MODIS. Journal of Climate, 18(10), 1551–1565.
  8. Kershaw, T., Sanderson, M., Coley, D., & Eames, M. (2010). Estimation of the urban heat island for UK climate change projections. Building Services Engineering Research and Technology, 31(3), 251–263.
  9. Lai, L.-W., & Cheng, W.-L. (2009). Air quality influenced by urban heat island coupled with synoptic weather patterns. Science of the Total Environment, 407(8), 2724–2733.
  10. Ma, Y., Kuang, Y., & Huang, N. (2010). Coupling urbanization analyses for studying urban thermal environment and its interplay with biophysical parameters based on TM/ETM+ imagery. International Journal of Applied Earth Observation and Geoinformation, 12(2), 110–118.
  11. Mallick, J., Rahman, A., & Singh, C. K. (2013). Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time ASTER satellite data in highly urbanizing city, Delhi-India. Advances in Space Research, 52(4), 639–655.
  12. Ng, E., & Ren, C. (2018). China’s adaptation to climate & urban climatic changes: A critical review. Urban Climate, 23, 352–372.
  13. Paska Ariandy Iswanto. (2008). Urban Heat Island di Kota Pangkalpinang Tahun 2000 dan 2006. Universitas Indonesia.
  14. Pusat Statistik, B. (n.d.). KOTA CIMAHI DALAM ANGKA Cimahi Municipality in Figures.
  15. Shishegar, N. (2014). The impacts of green areas on mitigating urban heat island effect: A review. The International Journal of Environmental Sustainability, 9(1), 119.
  16. Skelhorn, C. P., Lindley, S., & Levermore, G. (2018). Urban greening and the UHI: Seasonal trade-offs in heating and cooling energy consumption in Manchester, UK. Urban Climate, 23, 173–187.
  17. Stone, B., Hess, J. J., & Frumkin, H. (2010). Urban form and extreme heat events: are sprawling cities more vulnerable to climate change than compact cities? Environmental Health Perspectives, 118(10), 1425–1428.
  18. Sukojo, B. M., & Hauzan, N. S. (2023). Analisis Perubahan Indeks Kekritisan Lingkungan Dengan Algoritma Environmental Criticality Index Menggunakan Citra Satelit Landsat 8 OLI/TIRS (Studi Kasus: Kota Bandung). Geoid, 18(2), 311–325.
  19. Sukristiyanti, S., & Marganingrum, D. (2009). Kajian Kemampuan Citra Landsat dalam Deteksi Kerapatan Vegetasi dan Suhu Permukaan. Studi Kasus: Jawa Barat Bagian Selatan dan Sekitarnya. Jurnal Riset Geologi Dan Pertambangan, 19(1).
  20. Syuhada, A. S., & Suhaeri. (2010). Kajian Tingkat Kemampuan Penyerapan Panas Matahari pada Atap Bangunan Seng Berwarna. Prosiding Pada Seminar Nasional Tahunan Teknik Mesin IX, Palembang.
  21. Tan, J., Zheng, Y., Tang, X., Guo, C., Li, L., Song, G., Zhen, X., Yuan, D., Kalkstein, A. J., & Li, F. (2010). The urban heat island and its impact on heat waves and human health in Shanghai. International Journal of Biometeorology, 54, 75–84.
  22. Tayanc, M., & Toros, H. (1997). Urbanization effects on regional climate change in the case of four large cities of Turkey. Climatic Change, 35(4), 501–524.
  23. Tran, H., Uchihama, D., Ochi, S., & Yasuoka, Y. (2006). Assessment with satellite data of the urban heat island effects in Asian mega cities. International Journal of Applied Earth Observation and Geoinformation, 8(1), 34–48.
  24. Wen, Y., Guo, B., Zang, W., Ge, D., Luo, W., & Zhao, H. (2020). Desertification detection model in Naiman Banner based on the albedo-modified soil adjusted vegetation index feature space using the Landsat8 OLI images. Geomatics, Natural Hazards and Risk, 11(1), 544–558.

Jurnal Planologi
Published by Pusat Studi Planologi Universitas Islam Sultan Agung Semarang, in collaboration with Asosiasi Sekolah Perencanaan Indonesia.
Jl. Kaligawe Raya KM. 4 Semarang, Indonesia
Phone: +6212345678
Email: jurnalplanologi@unissula.ac.id

View My Stats

e-ISSN: 1829-9172

p-ISSN: 2615-5257

DOI : 10.30659/japs

Creative Commons License

Get a feed by atom here, RRS2 here and OAI Links here

apps