Universitas Diponegoro - Indonesia
ORCID: http://orcid.org/0000-0001-8239-2631
Analisis Transformasi NDVI dan kaitannya dengan LST Menggunakan Platform Berbasis Cloud: Google Earth Engine
This paper aims to convey the results of the study in the form of detecting the vegetation index and its relation to land surface temperature. Landsat data was taken between 2016 and 2021 in Semarang City, while the method used was spatio-temporal remote sensing with LST and NDVI algorithms, processed using the Google Earth Engine cloud-based platform with open source code. The results of the analysis in 2016 and 2021 in Semarang City, the largest NDVI transformation occurred in the low vegetation class, which increased by 26.80% and the decrease occurred in the high vegetation class by 19.65%. Meanwhile, the largest LST transformation was a decrease of 110.42% in temperature classes > 30ºC from 6196.68 Ha to 2944.98 Ha, and an increase in temperature class from 24 - 26ºC from 445.59 Ha to 2057.76 Ha. The results of the linear correlation test between NDVI and LST in 2016 obtained the equation y=-6.7124x+33.042 with R2 = 0.4758, while in 2021 it was y=-6.5081x+32.203 with R2 = 0.5316. This phenomenon requires great attention, because NDVI is strongly correlated with LST decline, so it is absolutely necessary to control it through spatial planning policies.
- Al Mukmin, S. A., Wijaya, A. P., & Sukmono, A. (2016). Analisis Pengaruh Perubahan Tutupan Lahan Terhadap Distribusi Suhu Permukaan Dan Keterkaitannya Dengan Fenomena Urban Heat Island. Jurnal Geodesi Undip, 5(1), 224–233.
- Darlina, S. P., Sasmito, B., & Yuwono, B. D. (2018). Analisis Fenomena Urban Heat Island Serta Mitigasinya (Studi Kasus : Kota Semarang). Jurnal Geodesi Undip, 7(3), 77–87.
- Dede, M., Pramulatsih, G. P., Widiawaty, M. A., Ramadhan, Y. R. R., & Ati, A. (2019). Dinamika Suhu Permukaan Dan Kerapatan Vegetasi Di Kota Cirebon. Jurnal Meteorologi Klimatologi Dan Geofisika, 6(1), 23–31. https://doi.org/10.36754/jmkg.v6i1.111
- Dong, J., Xiao, X., Menarguez, M. A., Zhang, G., Qin, Y., Thau, D., … Moore, B. (2016). Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sensing of Environment, 185, 142–154. https://doi.org/10.1016/j.rse.2016.02.016
- Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
- Hao, B., Ma, M., Li, S., Li, Q., Hao, D., Huang, J., … Han, X. (2019). Land Use Change and Climate Variation in the Three Gorges Reservoir Catchment from 2000 to 2015 Based on the Google Earth Engine. Sensors, 19(9). https://doi.org/10.3390/s19092118
- Huang, C., & Ye, X. (2015). Spatial modeling of urban vegetation and land surface temperature: A case study of beijing. Sustainability, 7(7), 9479–9504. https://doi.org/10.3390/su7079478
- Julianto, F. D., Putri, D. P. D., & Safi’i, H. H. (2020). Analisis Perubahan Vegetasi dengan Data Sentinel-2 Menggunakan Google Earth Engine. Jurnal Penginderaan Jauh Indonesia, 02(02), 13–18. Retrieved from http://jurnal.mapin.or.id/index.php/jpji/article/view/29
- Kosasih, D., Nasihin, I., & Zulkarnain, E. R. (2019). Deteksi Kerapatan Vegetasi dan Suhu Permukaan Tanah Menggunakan Citra Landsat 8 (Studi Kasus : Stasiun Penelitian Pasir Batang Taman Nasional Gunung Ciremai). Konservasi Untuk Kesejahteraan Masyarakat, 1, 162–173.
- KÃœchler, A. W. (1967). Vegetation Mapping. New York: Ronald Press Co.
- Mathew, A., Khandelwal, S., & Kaul, N. (2018). Investigating spatio-temporal surface urban heat island growth over Jaipur city using geospatial techniques. Sustainable Cities and Society, 40(April), 484–500. https://doi.org/10.1016/j.scs.2018.04.018
- Muzaky, H., & Jaelani, L. M. (2019). Analisis Pengaruh Tutupan Lahan Terhadap Distribusi Suhu Permukaan : Kajian Urban Heat Island ( Uhi ) Di Lima. Penginderaan Jauh Indonesia, 01(02), 45–51.
- Portela, C. I., Massi, K. G., Rodrigues, T., & Alcântara, E. (2020). Impact of urban and industrial features on land surface temperature: Evidences from satellite thermal indices. Sustainable Cities and Society, 56(February), 102100. https://doi.org/10.1016/j.scs.2020.102100
- Putra, A. K., Sukmono, A., & Sasmito, B. (2018). Analisis Hubungan Perubahan Tutupan Lahan Terhadap Suhu Permukaan Terkait Fenomena Urban Heat Island Menggunakan Citra Landsat (Studi Kasus: Kota Surakarta). Jurnal Geodesi Undip, 7(3), 22–31.
- Ravanelli, R., Nascetti, A., Cirigliano, R. V., Di Rico, C., Leuzzi, G., Monti, P., & Crespi, M. (2018). Monitoring the impact of land cover change on surface urban heat island through Google Earth Engine: Proposal of a global methodology, first applications and problems. Remote Sensing, 10(9), 1–21. https://doi.org/10.3390/rs10091488
- Rushayati, S. B., Alikodra, H. S., Dahlan, E. N., & Purnomo, H. (2011). Pengembangan Ruang Terbuka Hijau berdasarkan Distribusi Suhu Permukaan di Kabupaten Bandung. Forum Geografi, 25(1), 17. https://doi.org/10.23917/forgeo.v25i1.5027
- Sasmito, B., & Suprayogi, A. (2017). Model Kekritisan Indeks Lingkungan Dengan Algoritma Urban Heat Island di Kota Semarang. Majalah Ilmiah Globe, 19(1), 45. https://doi.org/10.24895/mig.2017.19-1.509
- Sejati, A. W., Buchori, I., & Rudiarto, I. (2019). The spatio-temporal trends of urban growth and surface urban heat islands over two decades in the Semarang Metropolitan Region. Sustainable Cities and Society, 46(January), 101432. https://doi.org/10.1016/j.scs.2019.101432
- Senanayake, I. P., Welivitiya, W. D. D. P., & Nadeeka, P. M. (2013). Remote sensing based analysis of urban heat islands with vegetation cover in Colombo city, Sri Lanka using Landsat-7 ETM+ data. Urban Climate, 5, 19–35. https://doi.org/10.1016/j.uclim.2013.07.004
- Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90(4), 434–440. https://doi.org/10.1016/j.rse.2004.02.003
- Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370–384. https://doi.org/10.1016/S0034-4257(03)00079-8
- Zhang, X., Estoque, R. C., & Murayama, Y. (2017). An urban heat island study in Nanchang City, China based on land surface temperature and social-ecological variables. Sustainable Cities and Society, 32(January), 557–568. https://doi.org/10.1016/j.scs.2017.05.005
- Zhou, W., Qian, Y., Li, X., Li, W., & Han, L. (2014). Relationships between land cover and the surface urban heat island: Seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land surface temperatures. Landscape Ecology, 29(1), 153–167. https://doi.org/10.1007/s10980-013-9950-5